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ABSTRACT

In a "pyramid" of successively reduced-resolution
versions of an image, by linking nodes representing image
blocks to nodes representing nearby larger blocks that
most closely resen ble them, we can conitruct trees (defined
by the links) representing homqogpnuouR4 p rlr0t of thf i lf)iit
image. In this paper, we apply this approach to segmentinq
an image on the basis of texture. We start from an initial
decomposition of the image into small blocks (e.g., 8 by 8);
compute a textural property for each block, yielding an array
of property values; build a "pyramid" of reduced-resolution
versions of this array; and apply the node linking process to
this pyramid. The resulting trees define a segmentation of
the original image into unions of the small blocks. This
segmentation is similar to that obtained by minimum-error
thresholding of the textural property values. Substantially
better results are obtained when this "bottom-up" block
linking process is preceded by a "top-down" process in which
large homogeneous blocks are linked to all of their subblocks;
the bottom-up linking is then used only for the blocks that
were not linked by the top-down process.

The support of the U.S. Air Force Office of Scientific Research
under Grant AFOSR-77-3271 is gratefully acknowledged, as is the
help of D. Lloyd Chesley in preparing this paper.

*Permanent address: Department of Electrical Engineering,
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"pyramid" of reduced-resolution versions of this array; and
apply the node linking process to this pyarmi. The i-osult in,
trees define a segmentation of the original imace into unions
of the small blocks. This segmentation is similar to tha ob-
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values. Substantially better results are obtained when this
"bottom-up" blocklinking process is preceded by a "top-down,"
process in which large homogeneous blocks are linked to all
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1. Introduction

Segmentation of an image into differently textured regions

is a relatively difficult problem [i]. In order to distinguish

reliably between two textures, we must examine relatively large

samples of them, i.e., relatively large blocks of the image.

But a large block is unlikely to be entirely contained in a

homogeneously textured region, and it becomes difficult to

correctly determine the boundaries between regions.

Chen and Pavlidis [2] have investigated a solution to the

block size problem based on the use of a "pyramid" of succes-

sively reduced-resolution versions of the given image. If the

image is 2n by 2n, the successive layers of the pyramid are,

n-1 n-i n-2 n-2
e.g., 2 by 2n , 2 by 2n , ... , 2 by 2, 1 by 1. The

elements of the array at layer k (with the original image being

k k
layer 0) thus represent image blocks of size 2 by 2 , and the

n-k n-ksize of the array is 2 by 2n . We assume here, for sim-

plicity, that the elements in each layer correspond to nonover-

lapping 2 by 2 blocks of elements in the layer below. (Other

ways of constcucting pyramids, based on overlapping blocks,

are also possible, as will be seen below.) Thus each 2k by 2k

k-i k-i
block is the union of four 2 by 2 blocks, which are its

four quadrants. For each block we can compute any desired tex- I

tural property, or a set of such properties; see [1] for a re- I
Ion

view of textural properties. We can now define a top-down seg-

nentation of the image into unions of blocks, based on the on/
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values of these properties, as follows; Starting from the

top of the pyramid (a single node corresponding to the entire

2n by 2 n image), we compare the property value(s) for each

block with the values for its quadrants. If the values are

sufficiently similar, we leave the block intact; if not, we

split it into quadrants, and repeat the process for each

quadrant. When this process is complete, each block that re-

mains unsplit should be contained in a homogeneously textured

region. Moreover, the maximal connected sets of blocks that

have similar textural properties should correspond to the

homogeneously textured connected components of the image. Note

that we can use a special case of this method to segment an

image into connected regions of different average gray level

by simply using average gray level as the "textural property".

Recently, a different pyramid-based method of segmenting

an image was proposed by Burt et al. [3-51. It makes use of

a pyramid defined by overlapping blocks - e.g., the elements

at each level correspond to 4 by 4 blocks of elements at the

level below, where these blocks overlap by 50% both horizon-

tally and vertically; the levels thus shrink by powers of 2,

just as in the nonoverlapped case. Thus an element of level k

has 16 "sons" at level k-i, and it is easily verified that

this implies that an element at level k-l has four "fathers"

at level k. Initially, we associate property values with the

elements at each level by simple averaging the values of the



16 "underlying" elements at the level below. We then define

"links" between elements at successive levels based on the

similarity of their values; e.g. [3), we link each element to

that one of its four "fathers" which is most similar to it.

(For variations on this idea see [4-5].) We now recompute

each element's value by averaging the values of only those

of its sons that are linked to it (if any). This cau:s

the similarities to change, so we may need to change some

of the links; we then recompute the values again, and repeat

the process. The links tend to stabilize after a few itera-

tions. If we trace them up to a level near the top of the

pyramid (e.g., the 2 by 2 level), they define trees of linked

image blocks. The sets of pixels at the leaves of such a tree

constitute a homogeneous subpopulation of image pixels (but

not necessarily a connected region!), so that the trees define

a segmentation of the image into (at most four) subsets.

In the experiments described in [3-5], the property used

was simply (average) gray level, so that the images were seg-

mented into subsets having different average gray levels.

This paper investigates a generalization of the "pyramid link-

ing" approach of [3-5] which makes use of textural properties.

Since such properties are not meaningful for single pixels, we

begin with a fixed partition of the image into small blocks

(e.g., 8 by 8), and compute a textural property for each block;

n-3 n-3
this yields a 2 by 2 array of property values, which we



use as input to the pyramid linking process. The trees defined

by pyramid linking thus have 8 by 8 blocks, rather tlan single pixels,

as their leaves, and the original image is segmented into unions

of such blocks.

Since textural properties measured on 8 by 8 blocks are

quite noisy, the pyramid linking process will not always yield

a segmentation into the desired regions; for example, a block

near the border of a region whose property value is close to

that of the neighboring region may get linked to that region,

and clusters of nearby blocks interior to a region whose prop-

erty values differ from that of the region may support one an-

other and become linked to a different subtree. In [6] it was

found that smoothing thne array of textural property values,

e.g. by median filtering, greatly improves texture classifica-

tion performance; note that a process such as median filtering

tends to smooth the values within a homogeneous region with-

out blurring them across region boundaries. Property value

smoothing is also used in the present paper to produce more

-reliable values, thus improving the results of the linking

process.

Considerable further improvement is obtained by combining

the "bottom-up" linking process described above with a "top-

down" process similar to that used by Chen and Pavlidis. Here

blocks judged to be homogeneous are linked to all of their

subblocks (i.e., the links are created top down), and bottom-up



linking is used only for those blocks that are left unlinked

by the top-down process. This process will be described in

further detail in Section 4.

In Sections 3 and 4 of this paper, the pyramid linking

approach is applied to the two 512 by 512 test images shown

in Figure 1. These images are composed of the geological

terrain textures used in earlier studies of texture classi-

fication [6,7]; (a) is Mississippian Limestone and Shale

above the 450 diagonal and Lower Pennsylvanian Shale below

it (labeled M/L), while (b) is Lower Pennsylvanian Shale

above and Pennsylvanian Sandstone and Shale below (labeled

L/P).

I.



2. Texture Features and Feature Arrays

The texture feature used was the second-order gray level

statistic "CONTRAST", which is the moment of inertia of the

co-occurrence matrix about i's main diagonal [1). Co-occurrences

were tabulated for a one pixel displacement is the horizontal

direction. This feature was chosen because it performed quite

well in the texture feature studies of Weszka et al. [7), and

it is also computationally cheap, since it can be computed

from a difference histogram rather than from a co-occurrence

matrix. Many other texture features could have been used,

but we restricted ourselves to one feature because our primary

interest was in the relative performance of pyramid linking

schemes in comparison with standard methods.

The features were computed for nonoverlapping small win-

dows (blocks) of the image. The sizes of these windows were

8 by 8 or 16 by 16 pixels. The size of the resulting feature

array was 64 by 64 or 32 by 32. For example, if we compute

the features for a 512 by 512 image in 8 by 8 blocks, the size

of the feature array is 64 by 64. In the corputation of these

"CONTRAST" feature arrays we used a fast algorithm which re-

duced the computation time drastically compared to the conven-

tional method. Instead of tabulating the co-occurence matrices

for each of the 4096 (or 1024) blocks and deriving the "CONTRAST"

features from these matrices, we derived the features from a

difference histogram (in effect) by simply summing the squared

differences of those pairs of pixels which had the required



displacement. With this approach the whole feature array was

computed during one image scan.

Prior to pyramid segmentation the feature values were

scaled to make them suitable for the pyramid algorithms, which

were designed to operate on input data in the range 0-63.

Also, because texture features measured over small windows are

unreliable, smoothing was applied to the feature arrays. The

smoothing method used was median filtering (value replaced by

the median of the feature values in the neighborhood), which

was found in [6] to be effective for texture feature value

smoothing. In the present studies we applied 0-5 iterations

of median filtering (using a 3 by 3 pixel neighborhood) to

the feature arrays and then we scaled these arrays linearly

to have values ranging between 0 and 63.



3. Experiments using Iterative Bottom-up Linkinq

In all segmentation experiments we used ten iterations

in the pyramid node linkinq computations, although in most

cases the segmentation converged earlier to a stable state.

In the pyramid initialization, the methods with unweighted

averaging of sixteen or four sons were used. Forced linking

was performed on one pyramid level at a time, and the segmen-

tation was forced to give just two classes. These and other

modifications of the original pyramid process are described

in [4] and [5].

The effect of median filtering prior to segmentation is

illustrated in Figure 2 for the image M/L. Figure 2a shows

the median filtered 32 by 32 pixel feature arrays after 0 to

5 iterations of median filtering. The pyramid segmentation

results for these six cases are presented in Fig. 2b. For

comparison, Fig. 2c shows the corresponding segmentations

using a minimum error thresholding method (the threshold that

gives the minimum number of misclassified pixels is used to

segment the feature array into two classes). It can be seen

that the median filtering effectively reduces the error rate

and that the results for these two segmentation methods (pyramid

node linking and minimum-error thresholding) are quite similar.

The selection of the minimum error threshold is very difficult

for the images with 0 to 1 iterations of median filtering, be-

cause the feature value histograms are not bimodal in these

cases.



Figs. 3 and 4 illustrate the use of 4 and 16 sons in

pyramid initialization for the 64 by 64 feature arrays M/L

and L/P. Figs. 3a and 4a are the median filtered arrays after

five iterations and 3d and 4d after three iterations of median

filtering. In Figures 3b, 4b, 3e and 4e are the corresponding

segmentations using four-son initialization, while in Figs. 3c,

4c, 3f and 4f are the results for sixteen sons. 16-son initial-

ization gave slightly better results for these noisy feature

arrays, while for less noisy gray level images the 4-son in-

itialization appears to be preferable [4].

To make the evaluation of the results easier, error rates

were computed for each case. The error rate is defined to be

the percentage of misclassifications for the unmixed windows

in the original image [6]. The error rate is based on the un-

mixed windows since the mixed windows (on the diagonal) always

have 50% error.

In Table 1 are presented the error rates for 64 by 64

feature arrays derived from M/L and L/P and for a 32 by 32 array

derived from M/L using 16 by 16 windows. In each case 0 to 5

iterations of median filtering were used before segmentation.

Error rates for minimum error thresholding, for pyramid seg-

mentation with 16-son initialization, and for the top-down/bottom-

up linking method (described in Section 4) are shown. It can be

seen that the error rates for bottom-up pyramid segmentation

are very close to the error rates for minimum error thresholding.

The minimum error thresholds were found empirically by looking



for a threshold which qives the minumum error rate. it

was found, however, that these thresholds can be derived

automatically with fairly good accuracy by Gaussian fitting

to feature value histograms obtained from properly selected

training samples.

To reduce the effects of some very high feature values

in some of the feature arrays we also did experiments in

which the feature values were truncated by setting the values

above a threshold equal to the value of the threshold. After

this the arrays were again linearly scaled. Using this method

the results were slightly better. This suggests that it is de-

sirable to use some kind of nonlinear scaling of features, if

we have feature values that are too dominating even after

median filtering. It was also found that reduction of the gray

level range of the original image prior to feature value com-

putation did not have much effect on the segmentaion results.

When 32 or 16 gray levels were used instead of 64, the error

rates were only slightly higher.



4. Experiments Using Noniterative Top-down/Bottom-up Linking

The top-down phase of this new linking method resembles

the split-and-merge algorithm used by Chen and Pavlidis in [2].

But instead of using a quadtree data structure we do split-and-

link operations in the pyramid structure. The following steps

are used in this segmentation approach.

a) Initialize the node values of the pyramid by block

averaging of each node's four sons.

b) Start linking at a specified level k. Find the

minimum and maximum values of each node's four

sons (at level k-l). If the difference between

the maximum and mimimum values is less than a

selected threshold, link all four sons to their

father, and go to level k-l. At this level, link

all four sons (at level k-2) to those nodes which

are linked to their fathers, i.e. which belong to

uniform blocks at level k. For the remaining nodes,

apply the same test that was applied at level k, and

link a node's sons to it if their range of values

is below the threshold.

c) Link each unlinked node to one of its four fathers

(closest in value). Do this at all levels starting

from level 0. This process is done only once, rather

than being iterated as in [3-5]. The resulting tree

defines the final segmentation of the image.



For all test images the top-down linking was done from

level 4 to level 1. The selection of the threshold value for

block uniformity testing was done empirically. The same

threshold value was used at each level. Because the error rates

seemed not to be very sensitive to changes in this threshold

value, it should not be difficult to find the value automatically.

The error rates obtained by the top-down/bottom-up linking

method are also shown in Table 1. It can be seen that these

error rates are much lower than the results for bottom-up

linking and for minimum error thresholding. The results are

quite good even without using median filtering.

Figure 5 shows the best results for the 64 by 64 feature

arrays. Figs. 5a and b show the M/L and L/P feature arrays

after five iterations of median filtering and Figs. 5c and d

show the corresponding segmentation results. Figure 6 shows

the segmentation results for the same feature arrays without

median filtering.

Figure 7 shows the results for the 32 by 32 feature

array M/L (featur computed in 16 by 16 blocks). Fig. 7a

shows the feature arrays after 0-5 iterations and Fig. 7b shows

the segmentation results.

The results obtained by top-down/bottu:n-up linking

are very good. It is evident that in order to get good segmen-

tation results for texture images, we should use global infor-

mation obtained from the upper pyramid levels to guide the



segmentation at lower levels. If we use only bottom-up linking,

the feature arrays are too noisy for good seqmeritation.

Many variations on the top-down/bottom-up linking method

are possible, but the exploration of these variations is beyond

the scope of the present study. Further studies in this area

are planned.

I.



5. Conclusions

This study shows that the pyramid node linking method

can be successfully applied to segmentation by texture. By

using iterative feature value smoothing prior to segmentation

quite small windows can be used for texture feature computation.

This means that the dividing line between two texture types can

be found with reasonable accuracy.

The accuracy of segmentation obtained by the basic bottom-

up linking approach is comparable to the accuracy obtained by

minimum error thresholding of the feature array. The advantage

is that we need not look at the feature value histogram. Deter-

mining the appropriate threshold (or thresholds) from the histo-

gram is often very difficult.

A great improvement in segmentation accuracy can be obtained

by using a top-down/bottom-up linking method. In this approach

global information obtained from upper pyramid levels is used to

locate large homogeneous areas, while more accurate boundary

information about tnese areas is obtained by linking nodes on

lower levels to the nodes representing these major areas.
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Iterations of Minimum error Bottom-up Bidirectional
Image median filtering thresholding linking linking

M/L 0 39.4 37.8 18.0
(Fig. la) 1 30.7 27.7 10.7

2 26.5 24.0 8.6

3 24.3 19.4 8.5

4 22.8 23.7 8.3

5 22.0 21.0 8.0

L/P 0 25.7 25.0 2.9

(Fig. lb) 1 10.7 9.9 2.2

2 6.8 5.2 2.2

3 5.2 4.6 1.6

4 4.3 6.3 2.0

5 3.5 3.3 1.6

M/L 0 33.7 36.0 14.7

(Fig. la) 1 19.1 19.8 5.5
using 16x16 2 13.7 11.1 6.0
windows

3 10.8 12.2 5.2

4 8.8 8.0 2.6

5 7.7 6.4 2.8

Table 1. Error rates (%)
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Figure 1. Test images
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Figure 4. ?nalogous to Figure 3 for the image
in Figure lb

a) b)

c) d)

Figure 5. Bidirectional linking results
a,b. Feature arrays for Pigs. la-b after 5

iterations of median filtering
c,d. Segmentations
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Figure 6. Analogous to Figure 5 but without median filterini
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